Cinnatriacetins A and B, New Antibacterial Triacetylene Derivatives from the Fruiting Bodies of *Fistulina hepatica*

Nobuaki Tsuge, Toshiya Mori, Takuya Hamano, Hisashi Tanaka, Kazuo Shin-ya* and Haruo Seto*

Somatech Center, House Foods Corporation, Yotsukaido, Chiba 284-0033, Japan * Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan

(Received for publication April 9, 1999)

In the course of our screening program for antimicrobial agents, we isolated two novel triacetylene derivatives named cinnatriacetin A (1) and cinnatriacetin B (2), from the fruiting bodies of the Japanese edible mushroom 'kanzotake', *Fistulina hepatica*. In this paper, we report isolation, characterization, structure elucidation, and biological activities of 1 and 2.

F. hepatica was grown on a sawdust based substrate consisting of Fagaceae sawdust (81% dry wt.) and malted rice (19%) with water added to give final moisture content of 58%. Polyethylene bags $(20 \text{ cm} \times 12 \text{ cm} \times 43 \text{ cm})$ were filled with the sawdust based substrate to 2.5 kg (wet wt.). The bags were then autoclaved at 121°C for one hour, cooled and inoculated with 17 g sawdust spawn. The bags were incubated in darkness at 25°C for fruiting initiation. After 25 days, the culture condition was changed to produce fruit bodies; temperature and relative humidity were maintained at 20°C and 90% and light treatment was made at over 200 lux. After cultivation for a further 19 days, the fruit bodies (2.3 kg) were collected and extracted with acetone and the extract was concentrated to a small volume. The aqueous residue was then extracted with ethyl acetate. The solvent layer was dried over Na₂SO₄ and concentrated to give an oily residue. This material was applied to a silica gel column developed with a mixture of chloroform-methanol (25:1). The crude active material thus obtained was subjected to Toyopeal HW-40 column chromatography developed with a mixture of chloroform - methanol (1:1). Further purification was performed by preparative MPLC (C18) using 80% aqueous methanol (pH 3.3). The active

fraction was finally subjected to preparative HPLC using a PEGASIL ODS column with 73% aqueous methanol (pH 3.3) to give two active components which were separately concentrated to dryness to yield pale brown powders of 1 (7.3 mg) and 2 (0.6 mg).

The physico-chemical properties of 1 and 2 are shown in Table 1. They are soluble in methanol, ethyl acetate, chloroform and insoluble in water. Their molecular formulae were determined both to be $C_{23}H_{20}O_5$ by HRFAB-MS suggesting close structural similarity between them.

The ¹H and ¹³C NMR data of **1** and **2** are summarized in Table 2. All one-bond ¹H-¹³C connectivities were established by a heteronuclear multiple-quantum coherence (HMQC) experiment.

The ¹H-¹H COSY and HMBC experiments on 1 revealed a partial structure, HOOC1-C2H2-C3H2- $C4H_2-C5H = C6H-C7H_2$ -, in addition to a *p*-substituted cinnamic acid moiety (Fig. 2). The isolated methylene protons H14 ($\delta_{\rm H}$ 4.83) were assigned to an oxymethylene function adjacent to a triple bond due to the characteristic high field chemical shift of C14 (δ_c 52.9). The oxymethylene protons were long-range coupled to an ester carbonyl carbon C1' ($\delta_{\rm C}$ 167.9), the presence of which was supported by an IR absorption at 1706 cm^{-1} . The remaining six quaternary carbons C8, C9, C10, C11, C12 and C13 were ascribed to triacetylene groups from their characteristic chemical shifts ($\delta_{\rm C}$ 59.7 to 80.4). Connectivities between the partial structures thus obtained (C1 \sim C7 and C14 \sim C9') were elucidated by ¹³C-¹H long-range correlations from two terminal methylene protons H7 ($\delta_{\rm H}$ 3.12) and H14 ($\delta_{\rm H}$ 4.83) to triacetylene carbons (C8 \sim C13). In order to explain the chemical shifts of C1 ($\delta_{\rm C}$ 177.4) and C7' ($\delta_{\rm C}$ 161.5) and the molecular formula of 1, C1 and C7' are assigned to a carboxylic acid and a free phenolic carbon, respectively. The geometrical configurations of 1 were elucidated to be 5Z and 2'E by coupling constants of the olefinic protons $(J_{5\sim 6} = 11.0 \text{ Hz} \text{ and } J_{2'\sim 3'} = 16.0 \text{ Hz})$. Thus, the structure of 1 was elucidated as shown in Fig. 1.

The molecular formula of **2** was determined to be the same as that of **1** by the HRFAB-MS data. The ¹H and ¹³C NMR spectra of **2** were quite similar to those of **1** except for two olefinic proton chemical shifts (H2' and H3'). These data indicated that **2** is a geometrical isomer of **1** at the C2'-C3' double bond. The geometries of **2** were elucidated to be 5Z and 2'Z by the coupling constants of the relevant olefinic protons ($J_{5\sim6} = 11.0$ Hz

· · · · · · · · · · · · · · · · · · ·	cinnatriacetin A	cinnatriacetin B
Appearance	pale brown powder	pale brown powder
Molecular formula	C ₂₃ H ₂₀ O ₅	C ₂₃ H ₂₀ O ₅
HRFAB-MS Found	399.1237 (M+Na) ⁺	399.1250 (M+Na) ⁺
Calcd	399.1208	399.1208
$UV\lambda_{max}^{MeOH}$ nm(ϵ)	314 (14400)	314 (14100)
IR υ (KBr)cm ⁻¹	3230, 2217, 1706, 1629 1602, 1440	3230, 2217, 1706, 1629 1602, 1440

Table 1. Physico-chemical properties of cinnatriacetin A and cinnatriacetin B.

Table 2. ¹³C and ¹H chemical shifts of cinnatriacetin A and cinnatriacetin B in CD₃OD.

cinnatriacetin A			cinnatriacetin B	
No	δ _C	δ _H (J/Hz)	δ_{C}	$\delta_{\rm H} \left({\rm J/Hz} \right)$
1	177.4		177.3	
2	34.2	2.28 (t, J=7.5)	34.1	2.29 (t, J=7.5)
3	25.6	1.65 (m)	25.5	1.67 (m)
4	27.4	2.15 (m)	27.4	2.11 (m)
5	133.2	5.55 (dtt, J=11, 7.5, 1.5)	133.2	5.55 (dtt, J=11, 7.5, 1.5)
6	123.6	5.45 (dtt, J=11, 7.5, 1.5)	123.6	5.43 (dtt, J=11, 7.5, 1.5)
7	18.1	3.12 (d, J=7)	18.1	3.11 (d, J=7)
14	52.9	4.83 (s)	52.6	4.80 (s)
1'	167.9		166.9	
2'	113.9	6.36 (d, J=16)	115.0	5.77 (d, J=13)
3'	147.7	7.65 (d, J=16)	146.4	6.92 (d, J=13)
4'	126.9		127.3	
5',9'	131.4	7.45 (d, J=8.5)	133.8	7.65 (d, J=8.5)
6',8'	116.8	6.79 (d, J=8.5)	115.8	6.76 (d, J=8.5)
7'	161.5		160.3	

Triacetylene signals from C8 to C13 are as follows; cinnatriacetin A, $\delta_{\rm C}$ 80.4, 72.7, 71.4, 65.3, 64.7, 59.7; cinnatriacetin B, $\delta_{\rm C}$ 80.4, 72.7, 71.4, 65.3, 64.7, 59.7.

and $J_{2'\sim 3'} = 12.9$ Hz). Thus, the structure of **2** was determined to be a stereoisomer of **1** at the C2'--C3' double bond as shown in Fig. 1. Treatment of a methanol solution of **2** with light (about 1000 lux) at room

temperature for 12 hours gave 1. Thus, 1 might have been formed from 2 through light treatment for the formation of fruit bodies.

Many kinds of polyacetylene derivatives are known to

THE JOURNAL OF ANTIBIOTICS

Fig. 1. Structures of cinnatriacetin A (1) and B (2).

Fig. 2. Structure elucidation of cinnatriacetin A by ¹H-¹H COSY and HMBC experiments.

Table 3. Antimicrobial activities of cinnatriacetin A and cinnatriacetin B.

Test organism	cinnatriacetin A	cinnatriacetin B	
Staphylococcus aureus IFO 12732	12.4	13.4	
Bacillus subtilis ATCC 6633	13.2	14.0	
Bacillus cereus IAM 1110	11.8	11.6	
Bacillus coagulans IFO 12583	13.6	14.2	
Escherichia coli IAM 12119	0	0	
Saccharomyces cerevisiae IFO 0205	0	0	
Saccharomyces bailii IFO 1137	0	0	

Samples $(20 \ \mu g)$ were applied on 8 mm paper disks. Values are diameters (mm) of inhibitory zones.

VOL. 52 NO. 6

be widespread in Basidiomycetes^{1~3)}. About 70% of those polyacetylenic compounds belong to the C₉ and C₁₀ acyclic series; thus the structures of cinnatriacetins containing a cinnamate moiety with a C₁₄ polyacetylene chain are uncommon¹⁻⁶⁾.

Some polyacetylene derivatives possess antimicrobial activities, such as $agrocybin^{1}$, $biformin^{5)}$ and $marasin^{6)}$. They were reported to be active against some kinds of bacteria and fungi. However, **1** and **2** were active only against Gram-positive bacteria as shown in Table 3. Tested so for, they were inactive against Gram-negative bacteria, yeast and other fungi.

References

- ANCHEL, M.: Acetylenic compounds from fungi. J. Am. Chem. Soc. 74: 1588 ~ 1590, 1952
- BU'LOCK, J. D. & G. N. SMITH: The origin of naturally-occurring acetylenes. J. Chem. Soc. (C) 1967: 332~336, 1967

- FARREL, I. W.; J. W. KEEPING, M. G. PELLATT & V. THALLER: Natural acetylenes. Part XLI. Polyacetylenes from fungal fruting bodies. J. Chem. Soc., Perkin Trans. 1973: 2642 ~ 2643, 1973
- 4) BARLEY, G. L.; U. GRAF, C. A. HIGHAM, M. Y. JARRAH, E. R. H. JONES, I. O'NEILL, R. TACHIKAWA, V. THALLER, J. L. TURNER & A. VERE: Natural acetylenes. Part 61. Fungal polyacetylenes and the crepenynate pathway : the biosynthesis of some C_9-C_{14} polyacetylenes in fungal cultures. J. Chem. Res. (S) 7 : $232 \sim 233$, 1987
- 5) JONES, E. R. H.; J. S. STEPHENSON, W. B. TURNER & M. C. WHITING: Chemistry of higher fungi. Part XIII. Synthesis of (a) C₉ triacetylenic epoxy-alcohol, a *Corinus quadrifidus* metabolite and (b) a C₉ triacetylenic-1,2-diol. The structure of biformyne 1. J. Chem. Soc. 1963: 2048 ~ 2055, 1963
- CAMBIE, R. C.; A. HIRSCHBERG, E. R. H. JONES & G. LOWE: Chemistry of the higher fungi. Part XVI. Polyacetylenic metabolites from *Aleurodiscus roseus*. J. Chem. Soc. 1963: 4120~4130, 1963